
Argonne Leadership Computing Facility1

Debugging and Profiling with Arm Forge

Argonne Leadership Computing Facility1

Ryan Hulguin
Applications Engineer
ryan.hulguin@arm.com

ALCF Simulation, Data, and Learning Workshop
February 28, 2018

Argonne Leadership Computing Facility2

Agenda

— Introduction to Arm Forge
— Basic Arm DDT Example
— Memory Debugging Arm DDT Example
— Offline Mode DDT Example
— Basic Arm MAP Profiling Example
— Using Arm MAP to Improve Performance
— Questions
— Hands on Examples

Arm in HPC Tools

Arm Forge

Arm MAP

Arm DDT

Arm Performance Reports

Allinea Studio

For Cross-platform

For Arm

.Bottleneck
isolation

Solver
tuning

Bug
Resolution

Code
validation

Production

We do tools for a single reason:
help people save their time.

TIME

Achieving performance portability

Use powerful
tools easily

Retrieve
useful data

Turn “a lot
of” data into
meaningful
information

Turn
information
into better

code

Using powerful tools more easily

Remote
Client

• Fast and easy
alternative to X-
Forwarding and
VNC

Reverse
Connect

• Simplifies
integration with
job submission
scripts

Continuous
Integration

• Automation of
debugging &
profiling for
professional
workflows

Generating useful and meaningful information

Scalable &

Portable

Data collection

Data

processing

Arm DDT – The Debugger

• Who had a rogue behavior ?
• Merges stacks from processes and threads

• Where did it happen?
• leaps to source

• How did it happen?
• Diagnostic messages
• Some faults evident instantly from source

• Why did it happen?
• Unique “Smart Highlighting”
• Sparklines comparing data across processes

Run

with Arm tools

Identify
a problem

Gather info
Who, Where, How,

Why

Fix

Preparing Code for Use with DDT

• As with any debugger, code must be compiled with the debug flag
typically -g

• It is recommended to turn off optimization flags i.e. –O0

• Leaving optimizations turned on can cause the compiler to optimize
out some variables and even functions making it more difficult to
debug

Argonne Leadership Computing Facility10

Basic Arm DDT Example

Argonne Leadership Computing Facility11

Memory Debugging Arm DDT Example

Argonne Leadership Computing Facility12

Offline Mode DDT Examples

Five great things to try with Arm DDT

The scalable print
alternative

Stop on variable change
Static analysis warnings

on code errors

Detect read/write
beyond array bounds

Detect stale memory
allocations

Glean Deep Insight from our Source-
Level Profiler

Track memory usage across the
entire application over time

Spot MPI and OpenMP
imbalance and overhead

Optimize CPU memory and
vectorization in loops

Detect and diagnose I/O
bottlenecks at real scale

Small data files

<5% slowdown

No instrumentation

No recompilation

Allinea MAP – The Profiler

How Arm MAP is different

Adaptive
sampling

Sample
frequency

decreases over
time

Data never
grows too much

Run for as long
as you want

Scalable
Same scalable

infrastructure as
Allinea DDT

Merges sample
data at end of

job

Handles very
high core

counts, fast

Instruction
analysis

Categorizes
instructions

sampled

Knows where
processor

spends time

Shows
vectorization
and memory
bandwidth

Thread
profiling

Core-time not
thread-time

profiling

Identifies lost
compute time

Detects
OpenMP issues

Integrated Part of Forge
tool suite

Zoom and drill
into profile

Profiling within
your code

Preparing Code for Use with MAP

• To see the source code, the application should be compiled with the
debug flag typically -g

• It is recommended to always keep optimization flags on when
profiling

Argonne Leadership Computing Facility18

Basic Arm Map Profiling Example

Matrix Multiplication Example

Master process

Slave process 1

Slave process n-1

C = A x B + C

Matrix Multiplication Profile

Enabling Vectorization
The compiler is unable to vectorize efficiently because of the following line
in C:
res += A[i*size+k]*B[k*size+j];

and in F90:
res=A(i*size+k)*B(k*size+j)+res

rewrite mmult to have
in C:
res += A[i*size+k]*transB[j*size+k];

and in F90:
res=A(i*size+k)*transB(j*size+k)+res

Improving Data Layout and Access Pattern

Serial Bottleneck

Inefficient I/O
• if(myrank == 0)

• {

• printf("%d: Receiving result matrix...\n", myrank);

• […]

• }

• else

• {

• printf("%d: Sending result matrix...\n", myrank);

• […]

• }

• if(myrank == 0)

• {

• printf("%d: Writing results...\n", myrank);

• mwrite(size, mat_c, filename);

• }

Improve Scalability of I/O Routines

• printf("%d: Writing results...\n", myrank);

• MPI_File_open(MPI_COMM_WORLD, filename,
MPI_MODE_CREATE+MPI_MODE_WRONLY, MPI_INFO_NULL,

&fh);

• MPI_File_set_view(fh, 0, MPI_DOUBLE,
MPI_DOUBLE, "native", MPI_INFO_NULL);

• MPI_File_write_at(fh,
slice*myrank*sizeof(double), &mat_c[0], slice,

MPI_DOUBLE, &st);

• MPI_Barrier(MPI_COMM_WORLD);

• MPI_File_close(&fh);

3x Speedup from Original Code

Six Great Things to Try with Arm MAP

Find the peak memory
use

Fix an MPI imbalance Remove I/O bottleneck

Make sure OpenMP
regions make sense

Improve memory access
Restructure for
vectorization

Argonne Leadership Computing Facility28

Questions?

Argonne Leadership Computing Facility29

Hands on Examples

Arm Hands-on files
• The files for the examples that follow can be obtained on

theta at the following location

• /projects/SDL_Workshop/arm/arm_handson.tgz

• This extracts 2 directories: demonstrations and
arm_examples

• The demonstrations are there for you to play with
and ask questions

• The examples are more like guided exercises

Launch Remote client

• Be sure to launch the remote client first

• Using a remote launch on your local machine is preferred

• Alternatively you can forward X11 when connecting to the login node
of theta, and launch it there

module load forge/18.0.2

forge &

• If you accidentally close this window (easy to do), you will have
to start it again

Hands-on Examples
• These examples are meant to be run on Theta in an

interactive session

• qsub -I -q training -A SDL_Workshop -t

120 -n 1 --proccount 64

• Once a session has been allocated, load the Arm
forge module

module load forge/18.0.2

Before Generating MAP profiles

• Static profiler libraries need to be created before MAP profiles can be
generated

• Go to the arm_examples/wrapper directory

• Run

make-profiler-libraries --lib-type=static

• The Makefiles for the examples have already been modified to look
for the profiler libraries in this directory

Go to exercise 1
• Exercise objectives

• Familiarize with DDT user interface

• Inspect values of u using multidimensional array viewer

• Set watchpoint and tracepoint for diffnorm_global

• Set breakpoint at line 89

• Typical run commands to use:
$> cd arm_examples/1_debug/

$> make

• Key DDT commands
On the login node:

$> forge &

In a submission file/interactive job:

$> ddt --connect aprun -n 4 ./jacobi.exe

Use Arm Forge to vectorize your codes

Use Arm Forge to optimize memory access

Go to exercise 2
• Exercise objectives

• Generate initial baseline profile

• Ensure the matrices are stored in the MCDRAM (if applicable)

• Fix the inefficient memory access issues

• Further enable vectorization with Intel compiler flag -xMIC-AVX512

• Generate profile with MAP after applying changes

• Typical run commands to use:
$> cd arm_examples/2_memory_accesses/

$> make

• Key Map commands
On the login node:

$> forge &

In a submission file/interactive job:

$> map --profile aprun -n 64 ./mmult2_c.exe

$> map --connect ./mmult2_c_*.map

How to identify load balancing issues?
Problem: “one or some process(es) have too much work”

Clues visible in synchronization

– MPI Collective calls (MPI_Barrier, _Broadcast, etc.) with no actual data transfer

– Idle cores where threads are stuck in locks/mutexes

Process/Thread 0

Process/Thread 1

Process/Thread 2

Process/Thread 3

Sync.
Start

Sync.
Stop

INACTIVE

INACTIVE

INACTIVE

Total runtime: 100 sec
Total CPU time available: 400 sec
Total CPU time actually used: 250 sec
Efficiency: 62.5% of the machine time

INACTIVE

Process/Thread 0

Process/Thread 1

Process/Thread 2

Process/Thread 3

Sync.
Start

Sync.
Stop

Total runtime: 100 sec
Total CPU time available: 400 sec
Total CPU time actually used: 300 sec
Efficiency: 75% of the machine time

Use Arm MAP to balance your workloads

Go to exercise 3
• Exercise objectives

• Expose workload imbalance issues in the code (preferably on 2 nodes)

• Make suggestions to fix the problem

• Typical run commands to use:
$> cd arm_examples/3_imbalance/

$> make

• Key Map commands
$> map --profile aprun -n 64 ./mmult4_c.exe
$> map --connect mmult4_c_*.map

Go to exercise 4
Sometimes optimizations introduce bugs of their own

• Exercise objectives

• Use ddt in offline mode to detect memory leaks

• Examine the debug_report.txt file

• Fix the leak

• Generate new report

• Typical run commands to use:
$> cd arm_examples/4_memory_leak/

$> make

• Key ddt commands
$> ddt --offline --mem-debug --output=debug_report.txt aprun -n 4

./mmult6_c.exe

• Solutions to these exercises can be found in the .solution
directory in each of the exercises

Solutions to Exercises

